Mesh wave
0x4447743d42680F7fbB56e87b3617463113ca649E 0x4447...ca649E

Static analysis Dynamic analysis Symbolic Execution SWC check

At MeshWave, our vision is to democratize access to high-performance computing resources, empowering individuals and organizations to harness the full potential of decentralized cloud computing. We believe in fostering innovation and collaboration by providing a reliable and scalable platform for a diverse range of use cases.

Contract address
0x4447...ca649E
Network Ethereum Mainnet
License Unlicense
Compiler v0.8.18 v0.8.18+commit.87f61d96
Type N/A
Language Solidity
Request date 2024/04/08
Revision date 2024/04/08
Critical
Passed
High
Passed
Medium
Passed

Owner privileges

No crucial issues found The contract does not contain issues of high or medium criticality. This means that no known vulnerabilities were found in the source code.
Contract owner cannot mint It is not possible to mint new tokens.
Contract owner cannot blacklist addresses. It is not possible to lock user funds by blacklisting addresses.
Contract owner cannot set high fees The fees, if applicable, can be a maximum of 25% or lower. The contract can therefore not be locked. Please take a look in the comment section for more details.
Contract cannot be locked Owner cannot lock any user funds.
Token cannot be burned There is no burn function within the contract.
Ownership is renounced Contract cannot be manipulated by owner functions.
Comments

Ownership Privileges

  • The ownership of the token is renounced. Hence, the owner cannot change any contract settings.

Note - This Audit report consists of a security analysis of the Mesh wave smart contract. This analysis did not include functional testing (or unit testing) of the contract’s logic. Moreover, we only audited one token contract for the Mesh wave team. Other contracts associated with the project were not audited by our team. We recommend investors do their own research before investing.

Audit Scope

This audit covered the following files listed below with a SHA-1 Hash. The above token Team provided us with the files that needs to be tested.

We will verify the following claims:
  • Correct implementation of Token standard
  • Deployer cannot mint any new tokens
  • Deployer cannot burn or lock user funds
  • Deployer cannot pause the contract
  • Overall checkup (Smart Contract Security)
The auditing process follows a routine series of steps:
  • Review of the specifications, sources, and instructions provided to SolidProof to make sure we understand the size, scope, and functionality of the smart contract.
  • Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
  • Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to SolidProof describe.
  • Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.
  • Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
  • Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
  • Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

A file with a different Hash has been modified, intentionally or otherwise, after the security review. A different Hash could be (but not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of this review.

Functions
public

33

State variables
public

5

Total lines
of code

563

Capabilities
Hover on items

Audit Details

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to speciïŹcation and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

low Issues

Pending

#1 Issue

Local variables shadowing (shadowing-local)

MeshWave.sol

L277

L325

Description

Rename the local variables that shadow another component.

Pending

#2 Issue

Missing Events Arithmetic (events-maths)

MeshWave.sol

L478-483

L528-540

L543-545

L549-551

Description

Emit an event for critical parameter changes.

Pending

#3 Issue

Floating pragma solidity version

MeshWave.sol

L10

Description

Adding the constant version of solidity is recommended, as this prevents the unintentional deployment of a contract with an outdated compiler that contains unresolved bugs.

Pending

#4 Issue

Remove safemath library

MeshWave.sol

L78-121

Description

The compiler version above 0.8.0 has the ability to control arithmetic overflow/underflow. It is recommended to remove the unwanted code in order to avoid high gas fees.

informational Issues

Pending

#1 Issue

Unused state variables (unused-state)

MeshWave.sol

L131

L191

L192

Description

Remove unused state variables.

optimization Issues

Pending

#1 Issue

State variables that could be declared constant (constable-states)

MeshWave.sol

L191

L192

L179

L188-189

L131

Description

Add the `constant` attributes to state variables that never change.

Pending

#2 Issue

Public function that could be declared external (external-function)

MeshWave.sol

L152-155

L157-164

L230-232

L238-245

L247-249

L251-253

L255-257

L273-275

L277-284

L286-293

L308-310

L452-459

L461-476

L478-483

L528-540

L543-545

L549-551

Description

Use the `external` attribute for functions never called from the contract.

Diagrams

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team. SolidProof.io do not cover testing or auditing the integration with external contract or services (such as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee regarding the absolute bug- free nature of the technology analyzed, nor do they provide any indication of the technology proprietors. SolidProof Audits should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Blockchain technology and cryptographic assets present a high level of ongoing risk. SolidProof’s position is that each company and individual are responsible for their own due diligence and continuous security. SolidProof in no way claims any guarantee of security or functionality of the technology we agree to analyze.